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From the integral equation equivalent to the one-dimensional Schrodinger equation with 
the boundary conditions appropriate for a bound state problem, an exact three-point 
integration rule is derived. The approximate evaluation of this rule by means of the 
Euler-.McLaurin sum rule gives rise to various O(h’) and O(h4) integration methods 
associated with the different ways of splitting the starting equation into a free part and an 
interaction term. The method is particularly useful to deal with the singularities of the poten- 
tial. ( IYX7 Academtc Pm\. lnc 

1. INTRODUCTION 

The problem of integrating numerically the one-dimensional Schrodinger 
equation and the radial equation corresponding to spherically symmetric three- 
dimensional systems is a subset of continued interest. Certainly there exists at 
present a number of computer codes both published or unpublished which almost 
automatically give the set of bound states for any potential with prescribed values 
of the error [ 11. 

However, apart from the computation of the energy levels or the determination 
of the corresponding wave functions for specific systems (molecules, nuclei, solids, 
etc.) the mere question of the determination of new algorithms or the improvement 
of existing ones has a deep interest by itself in the field of numerical analysis where 
this problem is usually called the Sturm-Liouville problem. 
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Among the various approaches we are particularly interested in the case where 
the relevant information (i.e., the potential or the wave functions) is known or has 
to be determined in a set of equally spaced points which constitute the integration 
mesh. In that case most of the algorithms are or can be described with the help of 
difference operators and most of them are related to the approximate relation 
between the second derivative operator and a polynomial or a rational form involv- 
ing the second difference operator 6*. In this form the original differential equation 
is converted into a set of (generally linear) equation involving both the eigenvalue 
and the discretized wave function. 

The most pupular methods are known by the name of second difference method 
(where the second derivative is approximated by D2 N 6*/h*+ O(h*)) and the 
Numerov method (in which case D’ = S’/h*/( 1 + d2/12) + O(h4)). Both permit a 
simple coding 121, even using hand calculators or home computers 131. When 
these methods are combined with the Richardson extrapolation [4] they become a 
simple, fast and accurate tool to determine in general the eigenvalues of a given 
potential. 

A step beyond these simple algorithms is the determination of other algorithms 
whose dominant error term depends on higher powers of the intergration step h. 
We can mention in this sense the so called extended Numerov methods [5] which 
have been generalised by means of formal Pade approximants expansions [IS], the 
Runge-Kutta-like extension of Numerov methods [7] and the perturbative correc- 
tions to the simpler algorithms [S]. In a different context, but deeply related to 
these methods, Calogero [9] obtained a very accurate integration rule which 
apparently has not received much attention. The clue of these algorithms is the 
determination of a new approximation to the second derivative operator in terms of 
the second differences operator or the approximation of the error term, propor- 
tional to a power of the second derivative, by using the starting differential 
equation. 

In this work we seek approximation to (hermitian) operators others than the 
second derivative one. In practice this is done through the integral equation form 
equivalent to the Schrodinger equation which includes the appropriate boundary 
condition. In a first step we split the Schrodinger equation into two pieces, a free 
part and an interaction part. The first one contains the second derivative operator 
and may also contain other quantities which are explicitly present in the differential 
equation (namely, the energy or the centrifugal barrier or both) or which are 
arbitrarily introduced (like a constant energy shift or a part of the potential). The 
freedom in choosing this free part is the most attractive aspect of this approach and 
can be the clue for an accurate study of potentials which deviate only slightly from 
simpler, analytically solvable, forms. 

Once the free Green function is determined and the integral equation is written 
down, the EulerMcLaurin sum rule is used to approximate this integral equation, 
getting several three-point integration rules which may be very simple coded. These 
rules include both the well known second differences and Numerov methods as well 
as other novel algorithms. One of the advantages of this approach is that it permits 
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a simple treatment of the troubles associated with the presence of singularities in 
the differential equation. 

Finally we include three practical rules associated with the natural ways of 
splitting the Schrodinger equation. 

2. INTEGRAL EQUATION 

The objective is to determine stationary solutions of the two-point boundary 
value problem 

$=(B(r)-E)R(r), 

where v contains both the potential and the centrifugal barrier, P(r) = 
V(r) - 1(2 + 1)/r’, subject to the boundary conditions 

R(O) = 0, 

R(X) = 0. 
(2) 

In Eq. (2) X should be infinity. The three-point rules to be derived in the next 
section are independent of the actual value of X. 

The differential equation can be written in the generic form 

URI = g(r) R(r) (3) 

and the differential form L will be taken as 

L=$-q(r) (4) 

so that the quantity g(r) corresponds in our problem to 

g(r) = p(r) - E- q(r). (5) 

The function q(r) added to the differential equation is arbitrary, provided the free 
equation L[R] = 0 can be algebraically solved. The independent solutions of the 
free equation will be used to build up the integral equation to Eq. (1) and incor- 
porating the boundary conditions (2). In other words, the various pieces entering in 
the differential equation (1) may be arbitrarily moved from the 1.h.s. to the r.h.s. 
and the form of L depends only on our imagination. 

The integral equation equivalent to our problem can be written using standard 
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methods [lo]: Let u(r) and U(T) be two independent solutions of the free equation 
(4), such that 

(i) L[u] = 0, and u(0) = 0, 

(ii) L[u] = 0, and u(X) = 0, 
(6) 

and define the Green function 

G( r, s) = 

sdr 

s 3 r, 

where w is the wronskian of u and u. 

w = u(r) u’(r) - u’(r) u(r) = constant. 

(7) 

(8) 

Then the integral equation 

R(r) = J” G(r, s) g(s) R(s) ds (9) 
0 

is equivalent to Eqs. (1) plus (2). The rest of the paper will be devoted to determine 
numerical approximations to Eq. (9), and for that purpose it is better to write 
Eq. (9) in the form 

wR(r) = u(r) Ir U(S) g(s) R(s) ds + u(r) 1” u(s) g(s) R(s) ds. 
0 r 

(10) 

From Eq. (10) it is possible to write a three-point rule relating the values of the 
function at three equally spaced points r-h, r and r + h. This task is easily carried 
out by writing Eq. (10) explicitly at these three points and determining a linear 
combination of these three equations so as to cancel the integrals extending from 0 
to r-h and from r + h up to X. The corresponding rule is 

w[C+R(r+h)+C,R(r)+CPR(r-h)] 

=c, 
[ j 

r+h u(r+h) 
I 

u(s) g(s) R(s) ds - u(r + h) jr’” u(s) g(s) R(s) ds] 
r 

4s) g(s) R(s) ds + 4r - h) jrrp h 4s) g(s) R(s) ds], 

(11) 



192 BUENDiA,GUARDIOLA, ANDMONTOYA 

where C, , C,, and C are r-dependent quantities given by 

C, =u(r-h)u(r)-u(r-h)u(r), 

Co = u(r + h) u(r - h) - u(r + h) u(r - h), 

C =u(r)U(r+h)-zi(r)u(r+h). 

(12) 

Note that the three-point relation (11) is not valid at the boundaries, i.e., at r = h 
or r = X-h. In these cases a two-point relation is easily obtained. Near the origin 
there results 

ufu(2h) R(h) - u(h) R(2h)] 

= [42/z) u(h) - u(h) u(2h)] 1" u(s) g(s) R(s) ds 
0 

+ u(h) u(2h) 1”’ [u(s) - u(s)] g(s) R(s) ds. (13) 
I? 

An analogous relation can be written for R(X- 21%) and R(X- h). However, 
given that it will not be used it is not necessary to write it. The reason of this dif- 
ferent treatment of the points near the origin and the points near the cut-off dis- 
tance is that later we will consider the case where the effective potential entering in 
g(s) can be singular at the origin. This is the case, for example, of the centrifugal 
barrier. Then the integrals appearing in (13) need to be carefully treated. On the 
contrary, the two-point relation corresponding to r = X-h can be considered like 
in Eq. (11) just putting R(X) = 0 and u(X) = 0. 

In the following section we will consider several approximations to the integrals 
appearing in ( 11) and ( 13). There will result a system of homogeneous equations in 
R(r) whose solution requires the solution of an eigenvalue or generalized eigenvalue 
problem, i.e., we will end up with a well posed algebraic problem. 

However, relations (11) and (13) can also be used within the spirit of other 
approaches to solve the Schrodinger equation, such as a piece-wise approximation 
of the potential by some simple forms in small intervals (i.e., a constant value [S] 
or a polynomial form [ 11 I). 

3. NUMERICAL METHODS: THE EULER-MCLAURIN SUM RULE 

To get a true three-point relation from (11) the definite integrals must be 
approximated so as to involve R(r) only at the points r - h, r and r + h. To this end 
we have found the Euler-McLaurin sum rule to be a very useful tool. For a single 
interval h, the EulerrMcLaurin rule is given by [ 121 
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s ofh 

u 
F(x)dx=;h[F(a)+F(h)l 

+ y (-wLh2m [F’*“~‘)(u+h)-F’*“~I’(a)] +R,,, 
m=, P=Y 

(14) 

where B, are the Bernouilli numbers B, = 4, B, = 6, B, = A, etc. The only condition 
for the validity of this formula is that F(x) must be analytic along a straight line 
joining a and a+h. 

Equation (14) involves the odd derivatives of the integrand at the boundaries. 
Due to the particular form of our integrands, Eq. (1 1 ), it turns out that we can 
manage in a simple form the cases where we consider on the r.h.s. of (14) the 
integrated term and the first (m = 1) Euler-McLaurin correction, getting the three 
point rule formula 

C+ [ l-Eg(r+h) 1 R(r+h)+C, l-Eg( ) R(r) [ 12 rl 
+c 

[ 
l-;g(r-h) R(r-h)= ++cg(r)K(r). (15) 1 

This is an extension of the well-known Numerov method [13]. The energy eigen- 
values are hidden in g(r) or in the functions u(r) and u(r), depending on the 
criterium used to split the original equation into a free and an interacting part. The 
solution of Eq. (15) gives the energy eigenvalues with an error proportional to h4, 
the first term neglected in the Euler-McLaurin sum rule. 

If the terms with coefficient h2/12 in Eq. (15) are removed there results the exten- 
sion to the simplest second differences rule, with an error proportional to h*. 

In Table I we present several natural forms of splitting the complete differential 
equation into a free and an interacting part, with the corresponding u(r) and u(r) 
functions and the value of the wronskian. Note that the form called ENERGY 
which incorporates a constant E = &I.* into the free equation may be interpreted in 
two ways: one can consider the constant E to be exactly the stationary value of the 
energy (thus giving rise to a nonlinear equation for the eigenvalue) or just like a 
displacement constant to be added afterwards to the energy. 

In addition to the cases shown in Table I one can also consider the case 
appropriately called COMPLETE, in which the free form contains both the cen- 
trifugal barrier and the energy E = +A2. The generating functions of the free Green 
function are related in that case to the spherical Bessel functions j,(h) and y,(h), 
or the corresponding spherical Bessel functions of imaginary argument. 

These forms of the free function are the standard forms. However, and for some 
particular potentials, a part of that potential could be included into the Green 
function, in a manner similar to perturbation theory. 

For the three cases shown in Table I we have the following three-point rules: 
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TABLE I 

The Natural Ways of Defining the Free Equation and the Corresponding Functions u(r) 
and t?(r) as Well as the Value of the Wronskians. 

Free Green 
Function Free Equation u(r) D(T) Wronskian 

Simple 

Energy 

Centrifugal 

L = d?Jdr’ 

I, = &/rir2 - A2 E = -j.’ 
L=d2/dr2+i2 E=i.’ 

L = d2Jdr2 - l(l+ I )/r’ 

r i-l?& 1 1 

@-,>-~r (,‘,‘~ II _ p -ilr I) 41 sinh( AX) 
sin(i.r) sin A( r - X) I. sin(lX) 

#-I #t 1/x2,+ I _ r i 21+ 1 

(1) Green function SIMPLE 

[l+Jn ,]Rn- ,-2[l-~u~]R,~+ll-~u,,+,]R,,+, 

= h’U,,R,, 

with U(r) = V(r) + I([ + 1 )/Y’ - E. 

(2) Green function including the ENERGY 

[I-;(... ,]L -Zcoih(ih)LI-~(.,1R,,+[i-~C..+,lH,,,, 

(16) 

= f sinh(lh) U,, R, 

with V(r) = V(r) + 1(1+ 1)/r’ 

(17) 

(3) Green function including the CENTRIFUGAL barrier 

[[~]‘(~+l,-[~i’~i(l-~u,, ,)L, 

+[[=$]‘(n- 1)-[~I’(H+ l)]( 1 -; &) R,, 

+[[-$[el’(- U]( 1-g &+I) &+I 

=&[[-$[~]‘w,i 

.[[~l’(,+‘)[~]‘“]‘““E)R”. 

with U(r) = V(r) - E. 
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Equations ( 16), ( 17) and (18) correspond to the Numerov-like forms, and the 
error in the determination of the energy is proportional to the fourth power of the 
step length. In all these formulae, if the factors of the type (1 - h*/12U,) are sub- 
stituted just by 1 we get the second-differences-like forms, with an error propor- 
tional to h’. 

In all cases presented, there results a linear homogeneous system involving a 
symmetric tridiagonal matrix (Eq. (15) has not been written explicitly in symmetric 
form because of typographical reasons). The cases called simple and cent&gal 
correspond to a standard eigenvalue problem (in the O(h*) approximation) or to a 
generalized eigenvalue problem (O(h4) case). Any of the usual methods of solution 
of these problems may be used, e.g., constructing the adequate Sturm sequence plus 
a bisection algorithm [14] or using the popular shooting method, to determine or 
isolate the eigenvalues. On the contrary, the dependence on the energy in the case 
called energy is not trivial, because the square root of the energy is present in the 
linear problem through the cosh(Ah) and sinh(1.h) functions. However, the simple 
shooting method can again be used. 

Note that the quantity X used to determine the free solution U(Y) does not appear 
in the three-point rules, Eqs. (16)-( 18). Nevertheless, in practical applications 
Eqs. (16))(18) must be stopped somewhere and this means to introduce a large X 
as the outher boundary. Killingbeck [4] describes a clever method to decide where 
to stop just by recognizing when the exponential increase of the wave function 
starts. In any case, the question of determining the appropriate distance X is par- 
ticularly difficult and important for bound levels near the edge of the potential well. 

4. THE CASE OF SINGULAR POTENTIALS 

The algorithms presented in Section 3 may be used directly for the case of non- 
singular potentials. However, when the potential is singular, we must be careful. As 
we have already mentioned, the appropriate relation near the origin involves only 
two points (see Eq. (13)) and using again the Euler-McLaurin sum rule the 
equation of interest is now 

=; w[u(2h) g(h) R(h) - u(h) g(2h) R(2h)]+; C [u(r) g(r) R(r)]:=,. (19) 

This equation has been reordered so that the 1.h.s. takes into account the con- 
tribution related to the trapezoidal approximation, whereas the r.h.s. is the part 
corresponding to the first Euler-McLaurin correction. In this equation 
[u(r)&) Wr)l,=o and Cu(r)g(r) Wr)lLzo are the limit of the product of the 
functions u(r) g(r) R(r) at r = 0 and the limit of its first derivative respectively. 
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There are two cases of particular interest: the case of an attractive potential with 
the behaviour at the origin a/r, (this is the case of Yukawa and Coulomb poten- 
tials), and the case of a repulsive potential with the behaviour 1(1+ 1 )/r*, i.e., the 
centrifugal barrier. Certainly the first case assumes that the centrifugal barrier is not 
present. 

In these two cases the behaviour at the origin of the regular solution is known 
(R -+ r in the first case, R + r’+ ’ m the second case) and thus the limits appearing 
in Eq. (19) can be determined. 

In O(h2) rules, the limit [u(r)g(r) R(r)lrzo is always zero. In other words, there 
are not corrections and a straightforward shooting method is appropriate to deter- 
mine the eigenvalues. 

However, the term [u(r)g(r) R(r)]Lzo may be nonzero. Its value depends both 
on the kind of Green function chosen (because of the presence of u(r)) and on the 
kind of singularity of the potential, which is present in g(r). We will work with 
some detail on the case of the correction related to Numerov’s method, i.e., with the 
Green function called SIMPLE. 

In the case of a Coulomb-like dominating behaviour of the potential we have the 
following behaviour near the origin 

R(r) + R’(O)r + R”(0) r*/2! + , 

R’(r) --f R’(0) + R”(O)r + ... , 

g(r) --f a/r, 

u(r) + r, 

and 

ho [u(r) g(r) R(r)]’ = @R’(O) (20) 

so that we must determine a new quantity, R’(0). 
In the case of the centrifugal barrier (/# 0) we have 

R(r) + r’+‘R(‘+‘)(O)/(l+ l)!, 

g(r) -+ 41+ 1 )/r2, 

and the limit of [u(r) g(r) R(r)]’ is null unless I = 1, in which case its value is R”(0). 
In conclusion, the use of the standard Numerov method requires the knowledge 

of the quanties R’(0) or R”(O), depending on the kind of singularity. 
The first derivative at the origin may be evaluated by using the integral equation 

(lo), 

u’(0) x 
R’(0) = - 

I 4s) g(s) R(s) A 
w 0 
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and the Euler-McLaurin sum rule. with the result 

!eo [u(r) g(r) R(r)]‘=& “z’ u(nh)[ V(nh) - E] R(nh). 
N - I 

(21) 

A simple way to take into account this correction is to evaluate the three point 
relation inwards. We assume a value for the eigenvalue E and compute R(r) from 
R(r+ h) and R(r+ 2h) using Eq. (16). At the same time the contributions to the 
sum in Eq. (21) are evaluated. This sum is only required in the last step, Eq. (19), 
which become the quantization condition for the energy. On the other hand, when 
the quantity required is R”(O), i.e., in the p-wave case, we have not found a simple 
and direct method for its evaluation like Eq. (21). The problem, however, may be 
circumvented [15] by evaluating R”(0) from the four nearest points R(h) up to 
R(4h). 

The situation is better in the case of the centrifugal Green function. In that case 
the limits appearing in Eq. (19) are zero for Coulomb-like potentials, and there is 
no problem with the centrifugal barrier which is already included into the functions 
U(T) and U(P). In that case the step-by-step integration algorithm may again be 
carried out inwards by using repeteadly Eq. (18). The last step is to impose 
Eq. (19) without the special terms involving the limits, to determine the quantized 
levels. 

Summarizing, we have the following situations related to singularities of the 
potential at r=O: 

(a) Trapezoidal (C)(h*)) three point rules: no correction is necessary 

(b) Numerov rule, corresponding to the Green function SIMPLE: the value 
of R’(0) is required for Coulomb-like potentials, and this may be computed by 
means of Eq. (21). 

The value of R”(0) is required for p-waves. See [ 151 for an algorithm 
These conclusions also apply to the Green function called ENERGY. 

(c) Numerov-like rule related to the Green function called CENTRIFUGAL: 
no corrections are necessary. 

It is very important to stress the fact that if these corrections are not taken into 
account the goodness of the algorithm is lost, i.e., a O(h4) algorithm becomes a 
O(h*) algorithm. 

5. SOME NUMERICAL EXAMPLES 

In this section we present some simple calculations using the various algorithms 
described above with the aim of checking the main properties of these methods as 
well as the effect of the singularities of the potential. In all examples we have used 
the Coulomb potential, V(r) = -2/r, its bound states being given by E, = -l/n*. 
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This potential has been chosen because the standard Numerov method fails to 
give high quality results both in s and p-wave states. The reason of that failure is 
the singular character of the interaction. Moreover, the calculations carried out 
with the wide variety of high precision methods described in [6] give the same 
poor results as Numerov method. 

To study the behaviour of the solutions with the integration step h we have 
included also the Richardson extrapolation corresponding to two calculations with 
step h and h/2. Then, if the dominant term of the error is of the form h”, the com- 
bination (2PE,,, - E,)/(2P - 1) should cancel that error term and because of the it 
should be a better approximation to the exact energy. In this expression E,,,z and E, 
are respectively the eigenvalues determined with step h/2 and h. 

Table II corresponds to the s-wave ground state. The first part contains the deter- 
mination of the energy with the standard second differences rule, and the 
extrapolation shows a clear h’ behaviour for the error. In the second part -we have 
used the Numerov method without the corrections related to the singularity at the 
origin, and again the error shows a h2 behaviour. Actually, the results in this case 
are worse than the results corresponding to the simplest rule. Finally, the third part 
includes the correction given by Eq. (21). Note that in this case the value of c( is 
-2. The effect of this correction in impressive, particularly if we realize that it is 
only used in the last step of the calculation. The Richardson extrapolation shows 
the h4 behaviour of the error term. 

In Table III we deal with the singularity associated with the centrifugal barrier 
for the case of p-wave states. This table shows a new feature: the standard second 

TABLE II 

The Determination of the Ground State of the Potential V(r) = -2;r 

No. Points Energy g.s. Extrapolation /7> Extrapolation h" 

Extrapolation rule, Green function simple 

80 -0,9848500 -0.99988653 
160 PO,99612399 -0.99999238 
320 -0.99902528 

Numerov rule, Green function simple, no corrections 

80 -0.96875846 -0.99833144 -0.99241685 
160 -0.99093820 ~ 0.99977413 ~ 0.99800695 
320 -0.99756515 

Numerov rule, Green function simple, with corrections 

80 ~ 1.00076422 ~ 0.99980826 ~-0.99999945 
160 - 1.00004725 -0.999988 17 -0.99999999 
320 - 1 .KKKIO294 

Nofr. The Exact Value is E,,\ = ~ I and the Integration algorithm has been extended from r = 0 up to 
x=20. 
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Table III 

Lowest P-Wave State of Coulomb Potential V(r) = -2/r. The Exact Value Is E= -0.25 and X= 40 

Method 80 Points 160 Points Extrapolation h” n 

Trapezoidal 
SIMPLE -0.25135236 -0.25032864 -0.24998740 2 

Numerov 
SIMPLE -0.25065776 -0.25008838 --0.25COO704 3 

Numerov 
CENTRIFUGAL -0.25003640 -0.25000236 -0.25000009 4 

Note. The method NUMEROV-SIMPLE does not include the correction related to the singularity at 
r = 0. 

differences method has an error proportional to h’, the Numerov method without 
corrections behaves like h’ and the centrifugal Numerov method has a error 
proportional to h4. 

Finally Table IV shows the results of evaluating the lowest D-wave state by 
means of all methods discussed. In turns out, as expected, that all Numerov like 
algorithms have almost the same precision and that there is no special advantage in 
that case for any of these methods. 

TABLE IV 

D-Wave Lowest State of Coulomb Potential V(r) = -2/r 

Method 80 Points 160 Points 

Trapezoidal 
SIMPLE 

Numerov 
SIMPLE 

Numerov 
ENERGY 

Numerov 
CENTRIFUGAL 

Numerov 
COMPLETE 

-0.1 I122665 -0.11114004 

-0.11111289 ~0.11111122 

~0.11111301 -0.11111123 

-0.11110945 -0.11111101 

-0.11110524 -0.11111074 

NOIP. The exact value is E = - $ = -0.111 I1 and X = 60. 
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6. SUMMARY 

The integral equation formalism has been used to generate integration rules 
involving three points for the determination of eigenvalues and eigenfunctions of 
the one-dimensional Schrodinger equation. The generating formula is the exact 
three-point rule given in equation (11) from which one can derive a great deal of 
practical rules by using numerical approximations to the finite integrals. The cases 
presented have been obtained with the help of the Euler-McLaurin sum rule. 

The main results and the extensions of our work can be summarized in the 
following points: 

(1) The generality and flexibility of the method related to the freedom in 
choosing the free part of the equation and the interacting part. 

(2) The ability to deal in a simple way with the problems associated with the 
singularities of the potential. 

(3) The method goes beyond the usual approach of discretizing strictly the 
second derivative operator. 

In the practical versions we have only presented the rules related to the use of the 
trapezoidal rule and the first Euler-McLaurin corrections. However, one can go 
beyond and include also higher corrections. In this manner a family of rules 
analogous (and including) the extended Numerov method [5] can be generated. 

Some of the novel rules contain, at least in part, other methods which have been 
found very appropriate in some specialized cases. In particular, the rule associated 
with the energy Green function in the trapezoidal approximation integrates exactly 
the functions exp( + 1.r) and r exp( f 1-r) or the corresponding circular functions for 
a positive value of the energy, as it happens in the exponential-fitting methods of 
Raptis [ 161 and Raptis and Allison [ 171. 

From a practical point of view, one can state the following results. When the 
potential has no singularities, the error of any of the methods derived in Section 3 
has the same dependence on the step h, namely h2 for trapezoidal rules or h4 for 
Numerov-like formulae, so that all of them should be considered as equivalent. 
Moreover, in the case of a singularity of the kind l/r (atractive), one should take 
into account the improvements discussed in section 4, particularly Eq. (21) and in 
the case of p-wave states one should use the centrifugal kernel, Eq. (18) to get the 
best method. 

Nevertheless, we should not forget the freedom in the construction of the three- 
point rule, a consequence of the freedom in choosing the free and the interacting 
part of the kernel. This fact can be appropriately used so as to improve the good- 
ness of the results in some specific problems. 
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